Lecture 24: RSA Assumption

RSA Assumption

(本部) (本語) (本語)

э

- Earlier, we have seen how to generate a random *n*-bit prime number
- We also saw how to efficiently test whether a number is a prime number or a composite number (basic Miller-Rabin Test)

• Today, we will see a new computational hardness assumption: the RSA Assumption

э

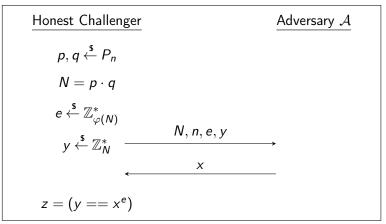
- Let *N* be the product of two *n*-bit primes numbers *p*, *q* chosen uniformly at random from the set *P*_n
- Let φ(N) = (p − 1)(q − 1) be the number of elements in Z^{*}_N (the set of integers that are relatively prime to N)
- We shall state the following result without proof

Claim

Let $e \in \{1, 2, ..., \varphi(N) - 1\}$ be any integer that is relatively prime to $\varphi(N)$. Then, the function x^e from the domain \mathbb{Z}_N^* to the range \mathbb{Z}_N^* is a bijection.

RSA Assumption II

• The RSA Assumption states the following.



• **RSA Assumption**. For any computationally bounded adversary A, the probability that z = 1 is exponentially small

RSA Assumption

< ロ > < 同 > < 回 > < 回 > < 回 > <

Working Example

- We shall use p = 3 and q = 11
- So, we have $N = p \cdot q = 33$
- Moreover, we have

 $\mathbb{Z}_{\textit{N}}^{*} = \{1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32\}$

- Now, $\varphi(N) = (p-1)(q-1) = 2 \cdot 10 = 20$. Verify that this is the size of \mathbb{Z}_N^*
- For this example, we shall choose e = 3 (note that 3 is relatively prime to φ(N) = 20, that is e ∈ Z^{*}_{φ(N)})

▲御▶ ▲理▶ ▲理▶ - 理

Let us start the repeated squaring procedure. The first row represents each element of \mathbb{Z}_N^* and the second row is the square of the corresponding element in the first row.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x^2	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1

▲ 伊 ▶ ▲ 三 ▶ ▲

Using repeated squaring, we compute the third row, which is the fourth power of the element in the first row.

X	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
							1													
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1

▲ 伊 ▶ ▲ 国 ▶

ヨート

We add a row that computes $y = x^e$ (recall that e = 3 in our case). We can obtain x^3 by multiplying $x \times x^2$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1						1													
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32

(本語)と (本語)と (4)

We can now verify from the table that x^3 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^* (because 3 is relatively prime to $\varphi(N)$) We recall the following result (stated without proof) from the beginning of the lecture.

Theorem

For any $e \in \mathbb{N}$ such that $gcd(e, \varphi(N)) = 1$ and $e < \varphi(N)$, the function $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection.

Since x^e is a bijection, we can uniquely define $y^{1/e}$ for any $y \in \mathbb{Z}_N^*$. For example, if y = 19 then $y^{1/e} = 13$, where e = 3. The RSA assumption states that, for a random y, finding $y^{1/e}$ is a computationally difficult task!

Let *d* be an integer $\langle \varphi(N) \rangle$ such that $e \cdot d = 1 \mod N$. In our case, we have d = 7. Let us calculate a row corresponding to x^7 . We can calculate this by multiplying $x \times x^2 \times x^4$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^d = x^7$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32

Note that d is also relatively prime to $\varphi(N)$; hence, the mapping x^d is also a bijection.

э

But note that, given d, we can easily compute the *e*-th root of y. Check that y^d is identical to $y^{1/e}$.

x	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32
x ²	1	4	16	25	16	31	1	4	31	25	25	31	4	1	31	16	25	16	4	1
<i>x</i> ⁴	1	16	25	31	25	4	1	16	4	31	31	4	16	1	4	25	31	25	16	1
$y = x^e = x^3$	1	8	31	26	13	17	10	19	5	4	29	28	14	23	16	20	7	2	25	32
$x^d = x^7$	1	29	16	14	28	2	10	7	20	25	8	13	26	23	31	5	19	17	4	32
$y^d = y^7$	1	2	4	5	7	8	10	13	14	16	17	19	20	23	25	26	28	29	31	32

・ 御 ト ・ ヨ ト ・

ヨート

Quick Summary

- The function $x^e \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection for all e such that $gcd(e, \varphi(N)) = 1$
- Given (n, N, e, y), where y ← Z_N^{*}, it is difficult for any computationally bounded adversary to compute the *e*-th root of y, i.e., the element y^{1/e}
- But given d such that e · d = 1 mod φ(N), it is easy to compute y^{1/e}, because y^d = y^{1/e}

Now, think about how we can design a key-agreement scheme using these properties. Once the key agreement protocol is ready, we can create a public-key encryption scheme with a one-time pad.

イロト イポト イヨト イヨト 二日